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Corticomotoneuronal cells (CMN), located predominantly in the primary
motor cortex, project directly to alpha motoneuronal pools in the spinal
cord. The effects of CMN spikes on motoneuronal excitability are tradi-
tionally characterized by visualizing postspike effects (PSEs) in spike-
triggered averages (SpTA; Fetz, Cheney, & German, 1976; Fetz & Cheney,
1980; McKiernan, Marcario, Karrer, & Cheney, 1998) of electromyography
(EMG) data. Poliakov and Schieber (1998) suggested a formal test, the
multiple-fragment analysis (MFA), to automatically detect PSEs. How-
ever, MFA’s performance was not statistically validated, and it is unclear
under what conditions it is valid. This paper’s contributions are a power
study that validates the MFA; an alternative test, the single-snippet anal-
ysis (SSA), which has the same functionality as MFA but is easier to
calculate and has better power in small samples; a simple bootstrap sim-
ulation to estimate SpTA baselines with simulation bands that help vi-
sualize potential PSEs; and a bootstrap adjustment to the MFA and SSA
to correct for nonlinear SpTA baselines.

1 Introduction

Most of the cortical output to muscles originates in the motor cortex (Fritsch
& Hitzig, 1870/1960; Rathelot & Strick, 2009). Motoneuronal pools in the
spinal cord combine inputs from cortical, subcortical, and spinal areas and
are responsible for muscle contraction. The traditional method detecting
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the effect of cortical spikes on spinal motoneuronal excitability is the spike-
triggered average (SpTA; Fetz, Cheney, & German, 1976; Fetz & Cheney,
1980; McKiernan, Marcario, Karrer, & Cheney, 1998): short EMG segments
(snippets) from a muscle of interest are collected around the times of cortical
spikes, and their average is computed. If a characteristic waveform appears
in the SpTA, it is taken as physiological evidence of connectivity between
the neuron and muscle. The multiple-fragment analysis (MFA; Poliakov &
Schieber, 1998) formalizes this visual inspection; it consists of measuring
the magnitudes of waveforms that appear in the SpTA around 6 ms to
16 ms postspike and testing their statistical significance. The MFA requires
preprocessing the data: the EMG snippets are grouped in fragments, and
SpTAs are calculated in each of them. We show that these steps can be
eliminated if we use a related but simpler procedure, the single-snippet
analysis (SSA).

The MFA and SSA are parametric tests that rely on distributional as-
sumptions, but their robustness to these assumptions was never studied.
We conduct a large simulation to study the statistical properties of the MFA
and SSA. We develop bootstrap procedures to estimate nonlinear SpTA
baselines, which are known to affect the MFA (Davidson, Odell, Chan, &
Schieber, 2007), and to adjust the tests for such baselines.

2 Methods

We first describe the multiple-fragment analysis and introduce new, related
tests. We then explain how we estimate their statistical powers, so that
their properties can be validated and their relative performances compared.
Finally, sections 2.3 and 2.4 contain bootstrap procedures to check the tests’
assumptions and estimate SpTA baselines.

2.1 The Multiple-Fragment Analysis and Related Tests. Given K cor-
tical spike times and a simultaneously recorded electromyography (EMG)
signal, we collect EMG snippets around every spike. We use their abso-
lute values to minimize the cancellation caused by averaging overlapping
positive and negative components of motor unit action potentials; rescale
time so that t = 0 is the time of the spike triggers; and compute the spike-
triggered average (SpTA) by averaging these “rectified” snippets across
time according to

SpTA(t) = K−1
K∑

k=1

rEMGk(t). (2.1)

Figure 1 illustrates this. A large excursion of SpTA(t) from its baseline
around 6 ms to 16 ms postspike suggests that a postspike effect (PSE) is
present at that latency. The multiple-fragment analysis (MFA; Poliakov &
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Schieber, 1998) serves to test the significance of such excursions: the K-
rectified EMG snippets are divided into G groups (fragments), and a contrast
between the excursion and the SpTA baseline in each fragment is computed
as

Xg = SpTAg([6, 16] ms)

−1
2
(SpTAg([−4, 6] ms) + SpTAg([16, 26] ms)), (2.2)

where SpTAg(t) is the fragment SpTA in fragment g and SpTAg([a, b]ms)
its average over time t ∈ [a, b]. Values of Xg that deviate from zero provide
evidence of a PSE around 6 ms to 16 ms postspike. Poliakov and Schieber
(1998) formalize this by calculating the test statistic

TMFA = X̄/ŝe(X̄), (2.3)

where X̄ is the mean of the X’s and ŝe(X̄) its estimated standard error,
and comparing the deviations of TMFA from zero to the standard normal
distribution. (TMFA is t-distributed, which is practically gaussian for the
sample sizes considered here.) The MFA effectively consists of testing if the
true mean of the X’s is significantly different from zero via a t-test. Note
that we can extend this test trivially to detect excitatory or suppression
PSEs—they appear in the SpTA as bumps in Figures 2C, 3C, and 3F and
troughs in Figure 3I, respectively—with a one-sided rather than two-sided
t-test.

Poliakov and Schieber (1998) fragment the data to be able to estimate
the variance of X̄ in equation 2.3, which they do according to ŝe2

(X̄) =
S2

X/G, where S2
X = ∑

g(Xg − X̄)2/(G − 1) is the sample variance of the X’s.
This calculation assumes that the X’s are independent, which we discuss
below. They use G = √

K fragments to strike a good balance between having
enough EMG snippets per fragment to calculate SpTAg in equation 2.2 and
enough X’s to estimate ŝe2

(X̄). They form the fragments by dividing the
experimental time into G periods of equal length and assigning to fragment
g all the snippets in period g. Davidson et al. (2007) note that some fragment
SpTAs are noisier than others because the fragments have different sizes, so
they recommend forming G = √

K fragments with equal number of snippets
by grouping every n = √

K consecutive snippets. We refer to this method
as MFAE, yielding test statistic TMFAE in equation 2.3, where the “E” stands
for “equal number of snippets.” Calculating TMFAE is easier than calculating
TMFA: the latter requires the times of the spike triggers to form the fragments;
the former requires only their ordering.
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But fragmentation is not needed. Indeed, consider a contrast similar to
equation 2.2, calculated for each EMG snippet k:

Yk = rEMGk([6, 16] ms)

−1
2
(rEMGk([−4, 6] ms) + rEMGk([16, 26] ms)). (2.4)

Then Xg in equation 2.2 is the average of the Y’s in fragment g. Furthermore,
X̄ = Ȳ when the fragments have equal sizes: there is no need to fragment
the data to calculate the numerator of TMFAE. Fragmentation is not needed
either to estimate se(X̄) in its denominator, since X̄ = Ȳ implies se(X̄) =
se(Ȳ): when the Y’s are independent, ŝe2

(Ȳ) = S2
Y/(K − 1) is an unbiased

estimate of se2(Ȳ), and therefore of se2(X̄), where S2
Y is the sample variance

of the Y’s. But we must be cautious: if the interspike interval (ISI) between
two consecutive spike triggers is less than 30 ms, the corresponding EMG
snippets used to calculate the Y’s in equation 2.4 overlap, so the Y’s are
dependent; if three consecutive ISIs are less than 30 ms, then the three
corresponding Y’s are mutually dependent; and so on. In that case, the
variance estimate ŝe2

(Ȳ) = S2
Y/(K − 1) suggested earlier may be biased, and

if that estimate is used in the denominator of TMFAE, then TMFAE may not
be standard normal under the null hypothesis of no PSE. It is therefore
important to obtain an unbiased estimate of se(Ȳ), as discussed below.

2.1.1 Blocking the Data to Attenuate Serial Correlations. Blocking consists
of forming G = K/n blocks of n consecutive Y’s, calculating the block
means, Zg, their sample variance, S2

Z, and the sample variance of Z̄ ac-
cording to ŝe2

(Z̄) = S2
Z/G. Then because Z̄ = Ȳ, ŝe2

(Z̄) will be unbiased for
se2(Z̄) = se2(Ȳ), provided the Z are independent. Moreover, the Z’s should
be independent when n is large because the Y’s are only serially correlated.
We do not expect other types of correlations: the EMG signal is the sum
of the activities of many motor units, so the noise should be random, and
the underlying EMG signal was subtracted from the Y’s, since they are
contrasts, so there should be no signal correlation. We refer to the blocking
approach as the fixed-fragment analysis (FFA), with test statistic

TFFA = Z̄/ŝe(Z̄).

Note that MFAE is a special case of blocking with n = √
K, although

the original motivation to fragment or block was not to reduce serial
correlations.

To select a block size n that yields independent Z’s, we plot ŝe2
(Z̄) = S2

Z/G
versus n (see Figures 4A to 4C), we identify n0 such that ŝe2

(Z̄) is approxi-
mately constant for n ≥ n0, and we use n = n0 as the block size. Indeed,
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letting n0 be such that the corresponding block means Z are independent,
then the means in larger blocks will also be independent since the correla-
tions are serial; hence, ŝe2

(Z̄) = S2
Z/G should be a constant equal to the true

variance of Ȳ, within random error, for all n ≥ n0. Note that we do not have
to pick n0 very carefully. Indeed, assuming that the Z’s are independent
and identically distributed (i.i.d.), TFFA has a Student-t distribution, which
is practically normal when G ≥ 30. Then the FFA test should be invariant
to n, provided n ≥ n0 and n ≤ K/G with G = 30. In our data, we observed
that FFA was not very sensitive to n in that range—in particular, the MFAE
and FFA often performed comparably (see Figure 3)—although n closer to
K/30 often reduced its power.

2.1.2 Estimating the Serial Correlations. Alternatively, we can estimate
se2(Ȳ) directly. We start with the variance formula for an average:

se2(Ȳ) = K−2

⎛⎝ K∑
k=1

se2(Yk) + 2
K∑

k=1

K∑
l=k+1

Cov(Yk,Yl )

⎞⎠ ,

and estimate the terms on the right-hand side by their sample counterparts,

ŝe2
(Ȳ) = K−1

(
S2

Y + 2
L∑

l=1

AC(l)

)
, (2.5)

where AC(l) = ∑K−l
k=1

[
(Yk − Ȳ)(Yk+l − Ȳ)

]
/(K − l) is the autocovariance of

the Y’s at lag l, S2
Y = AC(0) is their sample variance, and L is the num-

ber of successive significant autocovariances that can be determined from
an autocorrelation plot (see Figures 4D–4F). Note that AC(l) is easily inter-
pretable for time series (i.e., data recorded at regular intervals). Here the Y’s
are recorded at random cortical spike times, so AC(l) estimates the average
autocovariance between the Y’s of spikes that are l random ISI apart.

We refer to the direct variance estimation approach as the single-snippet
analysis (SSA), with test statistic

TSSA = Ȳ/ŝe(Ȳ), (2.6)

with ŝe2
(Ȳ) in equation 2.5. If the firing rate of the cortical neuron is such

that no ISI is shorter than 30 ms, then equation 2.5 reduces to se2(Ȳ) = S2
Y/K,

and SSA reduces to FFA with block size n = 1. The data sets analyzed
here contain many ISIs shorter than 30 ms, and we included up to L = 4
significant covariance terms. Note that L does not have to be chosen very
carefully because the autocovariances AC(l) in equation 2.5 are divided by
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a typically large K, so they contribute little to ŝe2
(Ȳ) when they are not

significant.

2.1.3 Summary. The MFA and MFAE are designed to detect PSEs around
6 ms to 16 ms postspike. They require fragmenting the data and calculating
fragment SpTAs. The default fragment size, n = √

K, was not chosen to
achieve a particular criterion. We proposed two related tests: the FFA, which
also requires fragmenting the data, but with block size chosen to achieve
independence between the block means. The SSA requires no fragmentation
at all. Ease of calculation aside, the only difference between the MFAE, FFA,
and SSA tests is how the true variance of Ȳ is estimated: the former two
use blocking, the latter a direct estimate. It is easy to show that the three
variance estimates are equal on expectation when the Y’s are i.i.d. However,
the EMG snippets are typically very heterogeneous, so the Y’s are unlikely
to be i.i.d., and the tests are unlikely to be exactly equivalent. We describe
how to compare their performances in the next section.

2.2 Statistical Properties of Tests. A desirable test has high power (i.e.,
high probability of detecting existing effects) and a spurious detections
rate that matches the significance level α, so that if a PSE is detected, we
know that it is spurious with probability less than α. To compare the tests,
we compare their powers and spurious detection rates. Power is typically
intractable, so we estimate it by the proportion of data sets in which PSEs
are detected. Because the number of data sets provided by real experiments
is too small to estimate proportions accurately, we construct a large pool of
realistic test data sets by subsampling experimental “parent” data sets.

2.2.1 Experimental Parent Data Sets. Our parent data sets come from three
experiments. The digit-flexion data set was collected in Marc Schieber’s lab.
It consists of simultaneously recorded spike trains from two neurons and
EMG activity from nine muscles while a monkey performed visually cued
individuated flexion and extension movements of the right fingers or wrist
(Schieber, 2005). The grasp data set, collected in our lab, consists of spike
trains from 171 neurons and EMG activity from 16 muscles, as a monkey
performed reach-to-grasp movements to a variety of objects at different
spatial locations and orientations. The precision-grip data set was collected
in Roger Lemon’s lab and consists of spike trains from nine neurons and
EMG activity from seven muscles, recorded while a monkey squeezed two
spring-loaded levels between the thumb and index fingers (Jackson, Gee,
Baker, & Lemon, 2003).

2.2.2 Test Data Sets. To create a test data set of size K that contains a PSE,
we select a parent data set whose SpTA clearly displays a PSE—Figure 2C
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or Figures 3C, 3F, and 3I. We string together K/100 blocks of 100 spikes, sam-
pled at random from the parent data set, and extract the K-corresponding
EMG snippets. Because the parent data set contains a PSE, the test data
set contains a PSE of similar size, although it is harder to detect when K is
small. To reduce the size of the PSE in a test data set of size K, we destroy the
time-locked effects in a randomly selected subblock of size K · (100 − a)%,
where a ∈ [0, 100]% codes for effect size: a = 0% means that the test data set
contains no time-locked effect; when a = 100%, the effect size is the same
as the parent data set. To destroy time-locked effects, we leave the EMG
trace unchanged and either add a large random jitter (SD 100 ms) to the
spikes in the subblock or reflect the entire spike train in the subblock (its
end becomes its start, and vice versa) to preserve the serial correlations in
the Y’s we would expect to see in real data sets. Our results did not depend
on which method we used.

2.2.3 Estimating Power Curves. The power of a test increases with effect
size and sample size. We obtain power curves as functions of sample size
by subsampling over 2000 test data sets of size K from a parent data set,
applying all detection tests to the test data sets, and estimating their powers
by the respective proportions of times they each detect PSEs. We repeat for
other values of K and plot the detection proportions of each test against
K. To obtain power curves as functions of effect size, we fix K around
half the number of spike triggers in the parent, and, given a fixed a ∈
[0, 100]%, create over 2000 test data sets of size K with effect size a. We
apply all detection tests to the test data sets and estimate their powers by
the respective detection proportions. We repeat this for several values of
a ∈ [0, 100]% and plot the detection proportions against a. (See Figure 3.)

2.3 Assumptions of the Tests. Let T refer to the test statistic of any
detection test, and TMFA, TMFAE, TFFA, and TSSA refer to specific tests. All tests
rely on the assumption that T is standard normal under the null hypothesis
of no PSE. There is no reason to question either the normality assumption,
which is justified by the central limit theorem in the large samples we have in
typical experiments, or the unit variance of TFFA and TSSA, since we take great
care to estimate the variance of Ȳ used in their denominators. The variances
of TMFA and TMFAE might deviate from one in samples small enough to make
the default block size n = √

K too small to attenuate the serial correlations
in the Y’s. However, K is rarely less than 1000, and n = √

1000 = 31 was
large enough for all the data sets investigated here. The only contentious
assumption is that the null mean of T is zero; indeed, it relies on the SpTA
baseline being linear in t (Davidson et al., 2007), which is often violated to
some degree (e.g. Figures 3C and 3I). Questionable assumptions can bias
p-values and in turn bias the spurious detections rates of the tests. Biased
p-values that are much larger or much smaller than the significance level α
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are of no concern since an adjustment will not change the outcome of the
test (i.e., respectively retain or reject the null hypothesis of no PSE). But we
adjust the tests when p-values are within few percentage points of α using
the following bootstrap simulation:

1. Jitter the observed spike triggers using a normal jitter with SD 30 ms
and extract the EMG snippets corresponding to the jittered triggers;
this is the rth bootstrap sample. See the appendix for a justification.

2. Calculate N∗
r , the numerator of T in bootstrap sample r, that is, calcu-

late N∗
r = Ȳ∗

r for the MFAE, FFA, and SSA tests. The MFA test requires
fragmenting the bootstrap sample.

3. Repeat steps 1 and 2 for r = 1, . . . , R, with R = 100.
4. Calculate m = R−1 ∑R

r=1 N̄∗
r , the sample mean of the N∗’s.

5. Subtract m in the denominator of T (e.g., TSSA = (Ȳ − m)/ŝe(Ȳ)).

To understand the adjustment to T, note that Ȳ is effectively the difference
between the average SpTA 6 ms to 16 ms postspike, where a PSE might
appear, and the SpTA baseline, estimated by the average SpTA in the two
adjacent time windows. Hence, Ȳ = 0, within random error, when the SpTA
is linear, and large deviations of Ȳ from zero provide evidence of a PSE.
But if the SpTA baseline is not linear, Ȳ should be compared not to zero but
to the expected value of Ȳ calculated from the baseline; this value is m. We
therefore standardize the tests by subtracting m in the denominator of T.

2.4 Bootstrap Estimates of SpTA Baselines. The detection tests pre-
sented so far are automatic—they do not require visual inspections of
SpTAs—and formal—they yield p-values. But PSE detection is often ini-
tially performed by assessing visually the deviations of an SpTA from its
baseline. The simplest and most frequently used baseline estimate is a line
fitted to the SpTA (Bennett & Lemon, 1994). The method of Davidson et al.
(2007) applies more generally to estimate baselines that are nonlinear. We
propose an alternative bootstrap SpTA baseline estimate, which has the ad-
vantage of providing simulation bands that help assess the significance of
SpTA excursions from their baselines (see Figures 2C, 3C, 3F, and 3I). We
proceed as follows:

1. Jitter the observed spike triggers (normal jitter with SD 30 ms, as
justified in the appendix). This is the same step 1 in the bootstrap
simulation of section 2.3.

2. Calculate the average of the rectified EMG snippets of the jittered
triggers; this is a null bootstrap SpTA.

3. Repeat steps 1 and 2 R = 100 times, and calculate the sample mean of
the R = 100 null bootstrap SpTAs (this is a bootstrap SpTA baseline)
and their sample pointwise variance.

Pointwise 95% simulation bands for null SpTAs are drawn around the
bootstrap baseline estimate at ±2 pointwise standard deviations. The
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Figure 1: A typical data set. (A, B) Portion of simultaneously recorded cortical
spike train and EMG trace from a precision-grip data set. (C) Rectified EMG
trace. (D) Rectified EMG snippet of the spike marked by the vertical gray line
in panels A–C. (E) SpTA for this neuron-EMG pair. The gray bands in panels D
and E mark the 6 ms to 16 ms postspike trigger period.

observed SpTA exiting the bands suggests that there may be a PSE, al-
though this test is informal because the bands have 95% pointwise rather
than joint coverage. The bootstrap could also be used to simulate approxi-
mate joint simulation bands (Ventura, 2010), but would require a simulation
size considerably larger than R = 100.

3 Results

Figure 1 illustrates the type of data analyzed in this paper. Panels A to C
show a portion of simultaneously recorded cortical spike train and EMG
trace and the corresponding rectified EMG trace. Figure 1D displays one
rectified EMG snippet; time was rescaled so that t = 0 corresponds to the
time of the spike trigger. Figure 1E shows the SpTA for this neuron-EMG
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         of T
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         T
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Figure 2: PSE detection methods. (A) Simultaneously recorded spike train and
rectified EMG trace (see Figures 1A and 1C). (B) The Y’s, equation 2.4, cor-
responding to the EMG snippets extracted from panel A. (C) Same SpTA as
in Figure 1E, with bootstrap baseline estimate and 95% pointwise simulation
bands (gray) (see section 2.4). (D) Observed value of TSSA in this data set (right)
and standard normal null distribution of TSSA (left). The corresponding p-value
is <10−4, which confirms the PSE we clearly see in panel C.

pair, that is, the average of all rectified EMG snippets (see equation 2.1).
Averaging reduced the variability, and we can detect a small bump around
the gray band at 6 ms to 16 ms postspike.

Figure 2 illustrates the PSE detection methods described in this paper.
Figure 2A is the portion of spike train and rectified EMG trace shown in
Figure 1AC. Figure 2C shows the same SpTA as in Figure 1E, on which
we overlaid a bootstrap baseline estimate and 95% pointwise bootstrap
simulation bands in gray (see section 2.4). The SpTA clearly exceeds the
bands, which provides evidence of a PSE around 6 ms to 16 ms. The MFA,
MFAE, FFA, and SSA tests measure this evidence with a p-value. Figure
2B shows the contrasts Y (see equation 2.4) for each of the EMG snippets
extracted from Figure 2A, which are used to calculate the test statistics T.
The observed value of TSSA for that data set is plotted in Figure 2D, along
with its null distribution: the observed TSSA is extreme, with p-value less
than 10−4. We reject the null hypothesis of no PSE at the 5% significance
level.
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Figure 3: Power curves based on three typical experimental parent data sets
(see section 2.2), whose SpTAs are in panels C, F, and I, with overlaid bootstrap
baselines and 95% pointwise simulation bands (see section 2.4). (C) Strong
facilitation PSE in a digit-flexion data set. (F) Weak facilitation PSE in a
grasp data set. (I) Moderate suppression PSE in a precision-grip data set.
(A, D, G) Power as a function of sample size. (B, E, H) Power as a function
of effect size; at a = 0%, there is no PSE; at a = 100%, the effect size is the same
as in the parent data set. All tests are approximately comparable, but MFA of-
ten has lower power, and SSA tends to have better power in smaller samples.
(B, E) The spurious detection rates at a = 0% match the significance level α.
(H) The spurious detections rate exceed α (see inset) because the SpTA baseline
is not linear; applying the bootstrap adjustment in section 2.3 systematically
rectifies all such discrepancies.

Figure 3 shows the power curves of the tests applied to subsamples from
the three parent data sets whose SpTAs are in Figures 3C, 3F, and 3I as
functions of sample size K and effect size a (see section 2.2). The powers
of all tests increase with K and a, as expected. The tests have comparable
powers, with no test being uniformly more powerful. However, the MFA
test is often the least powerful and the SSA test more powerful in smaller
samples, as is seen most clearly in Figure 3D. These observations are also
true in all other data sets we analyzed (not shown). We therefore recom-
mend against the MFA test and favor the SSA test; the latter is also easiest
to calculate. Next, Figures 3B, 3E, and 3H at a = 0% show the spurious
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Figure 4: Variance and autocorrelation functions used to determine the param-
eters of the FFA and SSA tests. (A, B, C) Estimated variance of Z̄, ŝe2

(Z̄), as a
function of block size n, scaled by ŝe2

(Z̄) when n = 1 to standardize the plot size.
The curves first decrease, then stabilize, within random error, as n increases. This
indicates that the EMG snippet contrasts Y are serially correlated. We pick the
block size n after which the curves are stable. (D, E, F) Autocorrelations of the
Y’s, AC(l)/AC(0), for lags l = 0 to 10, which measures the serial correlations in
the Y’s. We include the significant terms in equation 2.5 to obtain an unbiased
estimate of the variance of Ȳ.

detections rates of the tests—their powers when there is no effect in the
data. They match the significance level α = 5% in Figures 3B and 3E, which
suggests that the assumptions on which the tests rely are met. However, the
spurious detection rate is significantly larger than α in Figure 3H, although
at about 7%, the discrepancy is not alarming. This discrepancy is due to the
markedly nonlinear SpTA baseline in Figure 3I; when we reran the power
simulation including the bootstrap baseline adjustment described in section
2.3, the spurious detections rates lowered to α (not shown). We observed the
same across all data sets (not shown). Our simulation study shows that the
parametric assumptions of the tests are met except when the SpTA baseline
is not linear and that performing the tests systematically with the bootstrap
adjustment described in section 2.3 rectifies the problem.

Figure 4 shows the variance and autocorrelation functions used to de-
termine the parameters of the FFA and SSA (see section 2.1). The MFA and
MFAE use the default block size n = √

K, where K is the number of spike
triggers. We choose the block size for the FFA by determining when the
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variance plot becomes constant up to random error: it is very approximately
n = 20 in Figures 4A and 4C and n = 10 in Figure 4B. Recall from section 2.1
that n need not be determined very accurately. This is fortunate because the
variance plots are hard to read; they are highly variable, especially in small
samples (see Figure 4B), and have strong serial correlations (the errors are
clearly not random). A block size n = 20 seemed adequate for all data sets
analyzed in this paper (not shown) and could be used as a default. For the
SSA test, we determine the number L of autocovariance terms to include
in equation 2.5 using the autocorrelation plots in Figures 4D, 4E, and 4F.
L = 1 seems adequate in Figures 4D and 4F and L = 3 in Figure 4E. Recall
from section 2.1 that the SSA test is not sensitive to including few more
nonsignificant autocovariance terms, so we could also use L = 4 or 5 as a
default.

3.1.1 Thresholding EMG Snippets. It is common practice to discard low-
valued EMG snippets before computing the SpTA. To determine if this has
an effect on the tests, we repeated the power simulation using only EMG
snippets above a threshold. We used two thresholds: a constant equal to
the mean of an EMG segment where the muscle was inactive (McKiernan
et al., 1998) and a threshold based on the root-mean-square EMG value in
an EMG segment where the muscle was inactive (Davidson et al., 2007).
We found that neither method had any effect on the powers of the MFAE,
FFA, and SSA tests in any data set investigated here. We did not rerun the
simulation for the MFA test, because it is unclear how fragments should be
formed after thresholding the EMG snippets.

4 Discussion

The procedures currently available to detect functional connections be-
tween cortical neurons and spinal motoneurons are visual inspections of
SpTAs, subtracting a linear baseline estimate from the SpTA and identify-
ing excursions greater than two standard deviations from the pretrigger
baseline (Bennett & Lemon, 1994), and performing the multiple-fragment
analysis (MFA, MFAE), which are automatic tests that yield p-values.

Our first contribution is the single-snippet analysis (SSA), an automatic
test that has the same functionality as MFA/MFAE. The MFAE and SSA
are effectively the same t-test applied to serially correlated observations.
They differ in their treatment of these correlations: MFAE attenuates them
by blocking the data using a default block size (although this was not the
original intention), and SSA estimates them directly. The MFAE is a special
case of the fixed-fragment analysis (FFA), which is also based on blocking,
but for which the block size is chosen specifically to attenuate the serial
correlations. The MFAE, FFA, and SSA tests are conceptually equivalent,
but SSA is easier to calculate because it requires no fragmentation of the
data.
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Our second contribution is a power study, which shows that the MFA,
MFAE, FFA, and SSA tests can be applied with confidence. Indeed, their
spurious detection rates match the significance level, at least when the SpTA
baseline is linear. When the baseline is not linear, we observed discrepancies
smaller than 2% between a nominal 5% significance level and the observed
spurious detection rates. Although these discrepancies are not very con-
cerning, we proposed a simple bootstrap adjustment that eliminates them.
The power study also revealed that the tests have comparable powers, al-
though MFA is often the least powerful and SSA the most powerful in small
samples. Finally, we investigated the effect of thresholding the EMG snip-
pets on the powers of the tests and found none. This common preprocessing
step could therefore be eliminated.

Our last contribution is a simple bootstrap simulation that provides not
only an estimate of the SpTA baseline, but also simulation bands that can
be used to assess informally the significance of SpTA deviations from their
baselines. In particular, PSEs that might appear to be small because many
EMG snippets have low values (e.g., if we do not threshold the snippets)
would still exceed the simulation bands.

We consider two directions for further development. The tests are de-
signed to detect PSEs around 6 ms to 16 ms postspike, and they use a fixed
10 ms detection window that may not be optimal to detect narrow or wide
PSEs. We plan to extend them so they can detect PSEs at any postspike
latency and to design a test that adapts automatically to PSE width.

Appendix: Justifying the Bootstrap

The bootstrap methods in sections 2.3 and 2.4 require bootstrap samples
that satisfy H0, the null hypothesis of no time-locked PSE. There are many
ways to create data that satisfy H0, and the bootstrap baseline estimate and
adjustment m will depend on which way we use (Ventura, 2010).

One option to destroy time-locked effects is to keep the EMG signal
untouched and randomize the interspike intervals (ISIs) of the cortical neu-
ron spike train. But the resulting EMG snippets might not resemble the
snippets we would observe if H0 was true. In our data, the EMG signal
tends to be larger when the neuron’s firing rate is high, so that many of
the EMG snippets have comparatively large values. Randomizing the ISIs
yields data that contain a smaller proportion of large-valued EMG snippets.
Figure 5 shows the observed SpTA for a digit-flexion data set and the SpTA
obtained after randomizing the ISIs: the PSE has disappeared, but the pre-
and post-randomization SpTAs are dramatically different.

An alternative is to jitter the spikes, which preserves approximately the
firing rate of the cortical neuron (Harrison & Geman, 2009) while spreading
any potential time-locked effect. Figure 6A shows the same observed SpTA
as Figure 5, and SpTAs obtained after adding normal jitters with mean 0 and
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Figure 5: SpTA from a digit-flexion data set overlaid with the SpTA obtained
after randomizing the cortical spikes interspike intervals (ISIs). Randomizing
ISIs removes the PSE but also changes the SpTA outside the 6 ms to 16 ms
window.
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Figure 6: (A) SpTA from a digit-flexion dataset overlaid with SpTAs obtained
after jittering the cortical spikes times with values drawn from a normal dis-
tribution with mean zero and SD σ ; σ ≥ 30 ms destroys the PSE. (B) Bootstrap
mean adjustment m = Ȳ∗ (see section 2.3) as a function of σ ; m decreases from
Ȳ at σ = 0 and stabilizes when σ ≥ 30 ms.

SD σ to the spike triggers: σ ≥ 30 ms appears to destroy the time-locked
effect completely. Figure 6B shows the bootstrap adjustment m (see section
2.3) as a function of σ . At σ = 0 (no jitter), m equals Ȳ in the numerators
of TMFAE, TFFA, and TSSA, which measures the strength of the evidence for a
PSE. As σ increases, m gradually decreases to the expected value of Ȳ under
H0. In Figure 6B, m stabilizes somewhat above zero when σ ≥ 30 ms; if the
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SpTA baseline was linear, m would stabilize at zero. Figure 6 suggests that
any σ ≥ 30 ms yields bootstrap samples that satisfy H0. However, because
the baseline flattens further as the jitter increases, we use σ = 30 ms, the
smallest σ that destroys the effect, so that the bootstrap samples are as close
as possible to the observed data. We suggest reproducing Figure 6 for new
data sets, since they might have different characteristics from ours. Note
that jittering preserves approximately the mean firing rate of the cortical
neuron but adds noise to its ISIs, so the bootstrap Y∗’s might not have the
same serial correlations as the observed Y’s (see equation 2.4). Therefore the
Y∗’s can be used to correct the mean of the null distribution of Ȳ using m,
as described in section 2.4, but they cannot be used to correct its variance.
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